The Origin of Net Electric Currents in Solar Active Regions

نویسندگان

  • K. Dalmasse
  • G. Aulanier
  • P. Démoulin
  • B. Kliem
  • T. Török
  • E. Pariat
چکیده

There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that photospheric flows,as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum of Magnetic Dissipation and Horizontal Electric Currents in the Solar Photosphere

A proxy for horizontal electric currents in the solar photosphere was suggested. For a set of evolving active regions (ARs) observed with Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) in the high resolution mode, the dissipation spectrum, kE(k), and the spatial structure of dissipation, i.e., the Stokes dissipation function ε(x, y), were calculated from the observed B...

متن کامل

The New Definitions for the Power Terms in Distorted and Unbalanced Conditions and Calculation of these Terms for an Electric Arc Furnace

The rapid increase of non-linear loads in the last three decades has caused electrical quantities such as voltages and currents in 3-phase distribution systems to become distorted waveforms. This paper reviews, explains and discusses some new concepts, definitions and new available theory in the unbalanced and distorted systems. The usefulness of the proposed practical definitions is investigat...

متن کامل

The New Definitions for the Power Terms in Distorted and Unbalanced Conditions and Calculation of these Terms for an Electric Arc Furnace

The rapid increase of non-linear loads in the last three decades has caused electrical quantities such as voltages and currents in 3-phase distribution systems to become distorted waveforms. This paper reviews, explains and discusses some new concepts, definitions and new available theory in the unbalanced and distorted systems. The usefulness of the proposed practical definitions is investigat...

متن کامل

Numerical Investigation of the Non-Uniformity of the Electric Field Distribution by Injection of Net Electron Charge in TE CO2 Laser

In this report, the distribution and deviation of electric field in the active medium of the TE CO2 laser has been investigated due to the injection of net electron charge beam as a plasma generator. Some parameters of system have been considered, such as density and mean-free-path of injected charge beam. The electric potential and electric field distribution have been simulated by solving the...

متن کامل

Vertical Lorentz Force and Cross-field Currents in the Photospheric Magnetic Fields of Solar Active Regions

We demonstrate that the vertical Lorentz force and a corresponding lower limit of the cross-field electric current density can be calculated from vector magnetograms of solar active regions obtained at a single height in the solar atmosphere, provided that the vertical gradient of the magnetic field strength is known at this height. We use a predicted vertical magnetic field gradient derived fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015